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STOCHASTIC CONTROL SYNTHESIS OF SYSTEMS WITH
STRUCTURED UNCERTAINTY

Luis G. Crespo*

ABSTRACT

This paper presents a study on the design of robust controllers by using random vari-
ables to model structured uncertainty for both SISO and MIMO feedback systems.
Once the parameter uncertainty is prescribed with probability density functions, its ef-
fects are propagated through the analysis leading to stochastic metrics for the system’s
output. Control designs that aim for satisfactory performances while guaranteeing ro-
bust closed loop stability are attained by solving constrained non-linear optimization
problems in the frequency domain. This approach permits not only to quantify the
probability of having unstable and unfavorable responses for a particular control design
but also to search for controls while favoring the values of the parameters with higher
chance of occurrence. In this manner, robust optimality is achieved while the charac-
teristic conservatism of conventional robust control methods is eliminated. Examples
that admit closed form expressions for the probabilistic metrics of the output are used
to elucidate the nature of the problem at hand and validate the proposed formulations.

Keywords: Robust control, probabilistic methods, structured uncertainty, robust op-
timization.

1 INTRODUCTION

The main requirement of feedback control is to achieve acceptable levels of performance in
the presence of uncertainty. Fundamental trade offs and compromises between these two
aspects motivate the entire body of feedback theory. While performance concerns aspects
such as reference tracking, disturbance rejection, bounded control effort, etc., uncertainty
appears as a result of the inevitable discrepancies between the physical problem and its
deterministic mathematical model. Ignorance on the system’s exact dynamics, on the actual
operating conditions and the purposeful choice of a simplified representation of the physical
problem exemplify this aspect. In this context, uncertainty can be classified as structured
(or parametric) and unstructured [16]. The first kind corresponds to inaccuracies on the
parameters of the model while the second one corresponds to unmodeled dynamics.

Uncertainty can be modeled in many ways depending upon the desired quality of its math-
ematical description. Differential sensitivity, multi-models, interval analysis, perturbations,
fuzzy sets and probabilistic methods have been used [2, 7, 21]. The effects of uncertainty
on the stability associated with the prescribed control solutions have been studied by both
deterministic [13] and stochastic [8, 17, 18, 19] means. These analysis tools however, have
not been integrated to the control design process.

The methods most commonly used for robust control design are p-synthesis [1, 4, 9, 15]
and H,, optimization [3, 6, 14, 20]. In these, uncertainty is modeled with norm-bounded
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complex perturbations of fixed but arbitrary structure about its nominal form. This treat-
ment is extensively used primarily because it leads to a tractable set of sufficient conditions
for robust stability. Such approach however, have the following drawbacks: (i) the crudeness
of the uncertainty description usually leads to redundant and physically impossible plants,
then to highly conservative designs, (ii) it is not feasible to favor scenarios with higher chance
of occurrence among all the possible ones, and as a result, robust optimality is precluded,
(ili) a quantitative description of the robustness of the solution is unattainable and (iv) the
resulting controllers are so complex that model reduction techniques are usually required.
While such perturbations account for unstructured uncertainty coarsely, an augmented plant
model with structured uncertainty can be used to conciliate the uncertainty representation
with the physics of the problem. While robust optimization has been studied in various dis-
ciplines using different uncertainty models [5, 10, 11], stochastic control synthesis remains,
to a large extent, unexplored.

This paper studies the control design of plants with structured uncertainty for both
single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) systems us-
ing a probabilistic approach. The joint probability-density-function (PDF) of the parame-
ters is prescribed a priori, and then propagated, leading to a probabilistic description of the
metrics of the controlled response. Control design, involving decoupling, performance and
stability aspects, is carried out by solving constrained non-linear optimization problems in
the frequency domain. The content of this paper is organized as follows. Background on the
performance requirements for feedback SISO and MIMO systems is presented in Section 2.
Section 3 introduces closed loop stability considerations and the concept of robust stability in
the probabilistic sense. Several design strategies, based on the minimization of a frequency
dependent cost function, are proposed in Section 4 and evaluated in Section 5. A discussion
on the developments and some conclusions, are presented in Sections 6 and 7.

2 CONTROL REQUIREMENTS

Consider a linear-time-invariant (LTI) system with transfer function matrix G(s, p), where
p is a vector of random variables corresponding to the uncertain parameters. Let p be
prescribed a priori by the joint probability density function fp(p). In this notation, fp(p)
is the PDF of p at p = p. The support of fp(p), denoted with A, is the set of values the
random vector p can take, i.e. p € A. Note that the propagation of A leads to a family
or a set of uncertain plant models in which the physical system is assumed to reside. The
probability of occurrence of a plant within this set is fully determined by the structure of
G and the above mentioned PDF. If the components of p are independent, they can be
prescribed individually. Let K(s,k) be the transfer function matrix of a controller, where
k is a vector of gains to be determined. Control requirements for SISO and MIMO systems
are presented next.

2.1 SISO Systems

Let L(s,p,k)=GK be the well-known loop transfer function. For the one degree-of-freedom
system shown in figure 1, where r, u, z, d and n stand for reference, control, output, distur-



bance and noise signals; the following equations apply

z=Tr+Sd—-Tn (1)
e=z—r=-Sr+5Sd—Tn (2)
u=KS(r—d-—n) (3)

where S=(I + L)™' is the sensitivity function and T=SL = 1 — S is the complementary
sensitivity function. The following analysis can now be made. For ex(, disturbance rejection
and tracking are achieved if S~0. This implies that |[L|>1. On the other hand, noise
rejection implies that S=a1, which is obtained if La0. This illustrates a typical conflict in
the design process. Hence, the control requirements are

1. Disturbance rejection: |L| > 1.

2. Noise attenuation: |L| <1

3. Reference tracking: |L| > 1

4. Control energy reduction: |L| <1

5. Robust stability: Re{s;(p,k)} < 0 for all s;(p, k) such that 1 + L(s;, p,k) = 0.

Fortunately, the conflicting objectives are generally in different frequency ranges, and we can
meet most of them by having large loop gains at low frequencies (usual range of d and r)
and small gains at high frequencies (usual range of n).

Due to the probabilistic nature of p, L is a random complex variable parameterized by
the vector k and the frequency w. This makes the closed loop poles random variables and
the Bode and Nyquist diagrams of G and L random processes continuously parameterized.
In other words, at a fixed k and w, L is a random variable utterly described by a PDF,
in contrast to the single complex function it is when p is deterministic. In this context,
stochastic control design intends to shape the random process of the system’s output by
manipulating k such that the control requirements are satisfied for all the plants generated
by the propagation of A.

2.2 MIMO Systems

The system dynamics are now described by transfer function matrices. Let C(s,c) be the
transfer function matrix of a compensator. For the system shown in figure 2, where the open
loop transfer matrizis L(s,p,k) = GCK, Equations (2)-(1) hold once K is replaced by KC.
Denoting with (L) and ¢(L) the maximum and minimum singular values of L, the control
requirements are

1. Disturbance rejection: g(L) > 1
2. Noise attenuation: (L) < 1
3. Reference tracking: (L) > 1

4. Control energy reduction: (L) < 1



5. Robust stability: Re{s;(p,c,k)} < 0 for all s; such that Det{I + L(s;,p,c,k)} = 0.

As before, the open loop requirements (1) and (3) are valid at low frequencies while require-
ments (2) and (4) are valid at high frequencies. Then, at frequencies where high gains are
required the ‘worst-case’ direction is related to g(L), whereas at frequencies where low gains
are required the ‘worst-case’ direction is related to (L). Both ‘worst-case’ directions can be
unified by the function

['= p(w)a(L) + (1 = p(w))a (L) (4)

where p(w) € [0,1] is a weighting function whose value approaches one at low frequencies
and zero at high frequencies, e.g. p(w) =1/(1 + w)™ for m > 1. In this context, stochastic
control design intends to shape the random process I' (or equivalently the random process of
the singular values of L) by manipulating k such that the control requirements are satisfied
for all the plants generated by the propagation of A.

Compensator design is another area where a probabilistic treatment of uncertainty is
valuable. The objective of the compensator is to eliminate the effects of undesired cross-
couplings among inputs and outputs such that the MIMO system can be treated as a set of
independent SISO systems. This can be achieved if C'G is diagonal, e.g. if G is square and
and D is the desired uncoupled behavior, C' ~ DG~!. Since the exact form of G is always
unknown, compensators based on a nominal deterministic plant will not perform as planned.
With this in mind, we let ¢ be an additional design variable to be used for decoupling only.
Optimal decoupling can be pursued by finding ¢ in C(s,¢) such that a stochastic norm of
the off-diagonal terms of C(s, ¢)G(s, p) is minimized in the frequency range of interest. This
problem will be considered in Section 4.4.

3 ROBUST STABILITY

In this framework, we say that a LTI system with structured uncertainty is robust stable if
all its poles reside in the left hand side of the complex plane for all possible values of the
uncertain parameters, i.e the system is asymptotically stable Yp € A. The requirement (5)
listed above implies the robust stability of the closed loop response.

Denote with s a vector formed by the poles of a random transfer function. Stability
conditions can be written as

P{Re{s(p,k)} <0} =€ (5)

where P{A} is the probability of occurrence of the event A and € = {¢;} satisfies ¢; € [0, 1]
for i =1,... ,n. Defining q = Re{s}, these conditions can be alternatively written as

Fq(0)>1—¢ (6)

where Fpp(m) is the cumulative distribution function (CDF) of m at m = m. The Routh-
Hurwitz (R-H) test applied to the corresponding characteristic equation leads to the vector
inequality r = {r;} > 0, where r; is a R-H determinant. In this context, stability conditions
can be written as

Fr(0) < € (7)
where € = {¢;} satisfies ¢ € [0,1] for i = 1,...n. Robust stability is attained iff e = € = 0.
In this paper robust stability will be enforced via Equation (7).
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4 CONTROL DESIGN

Formulations that involve the solution to optimization problems in the frequency domain
are proposed below. In each problem, a metric of the controlled response, denoted with vy,
is used to build the cost function. Let T'(s,p,k) and 7'(s) be complex variables associated
to the current and desired designs respectively and O(s,p, k) = 0 the closed loop stability
equation. For SISO systems, take T' = L, T = ﬁ, and © =1+ L. For MIMO systems take
T=T,T="and © = det{I + L}.

4.1 Minimizing the Likelihood of Instability

Let y; be the ith inequality constraint for closed loop stability, i.e. the ith component of
Equation (6) or (7), applied to the closed loop characteristic equation. Hence, fy;(y;) is the
PDF of the corresponding random variable. Designs that maximize robust stability can be
found by solving the following unconstrained optimization problem:

k* = argmin {Z Fyl(y,)} (8)

=1

This problem will be referred to as P1 and its cost as .J;. The minimization of .J; shapes the
PDFs of the R-H determinants such that their excursion into the negative part of the r-axes
is minimized. Robust stability is achieved when inf,.{.J;} = 0. Notice that robust stability
might not be possible for the chosen control structure K (s, k).

4.2 Minimizing the Variability About a Target Response

Assume that 7' is a deterministic target transfer function whose magnitude § satisfies the
control requirements (1-4). Let y = |T'(s,p, k)|. Hence, fy(y,w) is the PDF of the corre-
sponding random process. Designs that improve the control performance by reducing the
variability of the response can be pursued by solving the following constrained optimization
problem

k= agmin{ [~ [ ) = 9 BIF ) ) dy o} )

subject to the set of stability constraints, i.e. either Equation (6) or (7), for a given € or €,
prescribed in advance. In this equation, ®(w) is the support of y and g(w) is a weighting
function used to favor particular frequency ranges. This optimization problem will be referred
to as P2 and its cost as Js.

The minimization of .J, concentrates the entire family of PDF's of the output about the
target. Not only the expected value of y is moved towards ¢ but also the variability around
it is reduced. Notice that this treatment involves shaping the whole PDF, including all its
moments and corresponding support. While the open loop requirements (1-4) are pursued
by manipulating the cost directly, the closed loop requirement (5) is enforced via inequality
constraints.

The main advantage of this formulation is the need for only the first two order moments
of y to calculate .J5. Notice however that this approach is over-restrictive because it penalizes
solutions that do not necessarily violate the control requirements.



4.3 Minimizing the Likelihood of Unfavorable Performances

Let y = |T(s,p,k)|. Hence, Fy(y,w) is the CDF of the corresponding random process.
Define the non-negative functions h(w) in w € [0, w;] and he(w) in w € [wq, 00) such that
a design satisfying y < h;(w) violates the requirements (1) and (3) and a design satisfying
y > ho(w) violates the requirements (2) and (4). Clearly, h; and hy are envelopes for the
undesired low and high frequency behavior respectively. Excursions of y below hy or above hs
are unfavorable from the performance point of view. In this context, designs that improve the
control performance can be found by solving the following constrained optimization problem

= agmin{ [ o)) o) o+ [ [ Fr(ha(e) )] () wh o

subject to the set of closed loop stability constraints for a a given probability of instability.
This problem will be referred as P3 and its cost as J;.

The minimization of J3 reduces the probability of violating requirements (1-4) directly.
In contrast to Jy, J3 does not penalize satisfactory solutions. Notice however, that the
calculation of the some of the first order moments of y; is insufficient to properly estimate
J3. At this point, let’s us define P, (w) as Fy(hi(w)) for w € [0,w1], as 1 — Fy (hy(w)) for
w € [wg,00) and as zero otherwise. Hence, J3 can be obtained by integrating P.,(w)g(w).

4.4 Maximizing the Decoupling Effect of the Compensator

The probabilistic description of p makes the components of the n; x ny matrix D = CG =
{d;}, random variables. Perfect decoupling is achieved if the random processes of the off-
diagonal terms are Dirac deltas at zero. This is clearly impossible unless G is known exactly.
Let y;x = |djk(s, p,c)|. Hence, Fy(y,w) is the CDF of the corresponding random process.
Providing that the decoupler is causal and stable, the compensator can be designed by
solving:

ny n9
¢’ = argmin {ZZ/Q[I)%( )yjk(wvpvc)Qijk(yjkvw)g(w) dyjk dw} (11)
k(W

J#Fk k

where € is the frequency range of interest and ®;;(w) is the support of fy, (yjr, w) at w.
This problem will be referred as P4 and the corresponding cost as .J;. Constraints on the
robust stability of C' can also be imposed.

5 EXAMPLES

In this section, the formulations proposed above are evaluated using problems that admit
closed form expressions for the PDF's of y and r;. This allows us to have a good understanding
of the problem at hand by avoiding numerical errors caused by sampling and asymptotic
approximations.

Notice that the set of solutions of the P1 problem defines the domain where the solutions
to the P2 and P3 problems exist. Then, a solution to the P1 problem can be used as initial
condition in the numerical search for the P2 and P3 solutions. In all the examples, p = {a}
and a € A =[a",a"], fa(a) are given.



5.1 SISO System
Consider the plant and the PID controller
b(1 + ds)
a -
(s,P) (1+ es)(e+ as)
N /ﬁ + kQS + k382
s

(12)

K(s,k) (13)

where k = {k1, ks, k3}. The magnitude of the resulting loop transfer function is given by

P — (14)
bi

Vet + (wa)?
\/ (1+ (dw)?)[(ks — ksew?)? + (kyw)?]

(cw)?+1

y = |
p= Ll
w

Notice that the effect of the uncertainty is not noticeable at low frequencies. The random
process of the output is given by

h2
w?yia

fr(y,w) = [fa(@) + fa(—a)] (15)

where a = (1/w)+/(h/y)? — €. The support of y, i.e. y € [y~,y "], is bounded by

h/e] if0e A
maz{y(a®),y(a”)} otherwise

y() = minfy(a®). @)}, yHw) = {

The characteristic equation for closed loop stability is O(s, p, k) = as®+ 352 +vs+§ = 0,
where o = ac+bdks, 3 = a+ce+b(dky + k3), v = e+ b(ky + dk3) and 6 = bky. The R-H test
leads to the inequalities r; > 0 for i = 1,2,3 where r; = §/a, ro = fy—ad and r3 = §/a. In
general, the constraints can be written as r; = (a(; +n;)/(a&; + k;) > 0 for i = 1,2,3. The
expressions for (;, n;, & and k;, which are non-linear functions of the components of k, are
omitted due to their extension. The corresponding CDFs are given by

1 — sign{m;}[Fa(a;) — Fa(a;)] ifr; > (/& and m; #0
Fp,(rj) = sign{m;}[Fa(da;) — Fa(a;)] if r; < (/& and m; # 0 (16)
H{r; — (a¢; +mi)/(a& + k;)}  otherwise

Fa(d) if (>0
FRz(TQ) = 1-— FA(dQ) if CQ <0 (17)
H{rs —ns} otherwise

Where mj = Cjﬁj — njgja dj = _Hj/gj fOI'j = 1,3; dz = (Ti/ii — 7]1)/(@ — ngz) fOI' Z = 1,2,3
and H{-} is the Heaviside function. Differentiation leads to

_ [ Imylfalag) /(G — 1) if mj #0
Ty (ry) = { o{r; f (aC; +m;)/(a& + K;)}  otherwise (18)



d{ry —m}  otherwise

funtrz) = { TGl (19

where 6{-} is the Dirac function. Notice that a combination of the gains can eliminate the
randomness of the constraint making it purely deterministic. This has also been observed
in [2]. The following observations are made: (i) when a; € A, some designs lead to fg,(r;)
with unbounded support, (ii) unbounded fg,(r;) are obtained where m;(k,a) = 0, i.e. 37
such that lim,., .z, fr,(r;) = oo.

The problems P1, P2 and P3 can now be solved numerically using Equations (15), (16)
and (17). In the results that follow, the values b = 3, ¢ = 10, d = =2, e = 2/5, € = 0 and
the functions § = |3(1 — 2s)/(20s(2s + 1)(s/3 + 1))|, hi(w) = 1 for w € [107*,1072] and
ha(w) = 3/(4w) for w € [0.5,10?] are assumed. The improper integrals used to build the cost
functions will be approximated in accordance with these intervals, i.e. w € [107*,10?].

First, assume that a is a beta random variable with parameters {2,10} and support
A =[0,2]. In this setup, the uncontrolled system is robust stable. The corresponding bode
diagram is shown in figure 3. The system’s response at high frequencies is clearly inadequate,
then some control action is needed. The P2-solution leads to the diagram shown in figure 4.
Here, g(w) has been used to favor the performance at low frequencies. The corresponding
PDFs for the R-H determinants are shown in figure 5. Notice that three supports extend
towards positive infinity. The same information is shown in figures 6 and 7 for a cost function
that favors the performance at high frequencies.

Figure 8 shows the stochastic bode diagram for a robust stable design. Notice the un-
desired performance regions created by h;(w) and hy(w) and the corresponding P.,. This
design is used as initial condition for solving the P3-problem. The corresponding solution
is shown in figure 9, where é = 0.005{1,1,1}. The PDFs of the R-H determinants and the
stochastic Nyquist diagram are shown in figures 10 and 11. Due to € # 0 s = —1 is encircled
by a portion of the PDF of L and a tail of fg,(r2) is in the negative part of the ro-axis. In
all three optimal solutions the control is strictly proper, i.e. ki = 0.

Now, assume that a is beta distributed with parameters {2, 2} and support A = [—0.5, 1].
The corresponding uncontrolled plant is nominally stable, i.e. G(s, E[p]), but robust unsta-
ble. This can be seen from figure 12 where the PDF's of the R-H determinants are shown.
It is interesting to notice that the support of those distributions is given by sets with the
form S = (—o0, U] U [®,00), where ¥ and ® are finite values that depend on a~ and a™.
This occurs due to singularities in r; and A caused by vanishing denominators. This can be
explained by thinking of a as a moving parameter within A. When a approaches zero from
the right, a pole moves towards positive infinity and the system is stable . At a = 0, such
a pole disappears at infinity, i.e. the relative degree of the plant decreases by one, and the
system stability is now given by a degenerated characteristic equation. When « is decreased
further, such a pole moves from minus infinity towards zero making the response unstable.
This analysis explains the non-connected support of the bi-modal PDF.

The first task is to find k for robust stabilization. The stochastic bode diagram and the
PDFs for the R-H determinants corresponding to a solution of the P1 problem are shown
in figure 13 and 14. It is observed that: (i) there is a substantial difference between the
nominal and the expected response at high frequencies in both magnitude and phase, (ii)
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the uncertainty on the sign of a makes the phase plot to spread over a range 180 degrees wide
at high frequencies, (iii) robust stability cannot be achieved without the derivative action
and (iv) 7 behaves as a deterministic constraint at the optimum, i.e. fg, (r) ~ §(r; —1073).
Notice that observation (iii) precludes the search for designs on the PID control structure
that lead to satisfactory performances at high frequency. The Pl-solution leads to figures
15, 16 and 17.

5.2 MIMO System
The following model is derived by studying the angular velocity control of a satellite spinning

about one of its principal axes [12]

1 s—a*>  a(s+1)
s24a2 | —a(s+1) s—a

G(s,p) = (20)

The plant has a pair of poles at s = +aj so it needs to be stabilized. A diagonal PID control
structure without compensator is considered, i.e. k = {ky, ko, ks}, K(s,k) = (k1 + ka/s +
k3s)I, C(s,c) = I. Equation (4) leads to

w1+ a?

la + wl

w1+ a?

y=L=p

where 1 = \/(wkq)? + (ki — k3w?)?/w. For the sake of simplicity in the notation we will
use ¢ and & to denote the minimum and maximum singular values of L respectively. The
corresponding random processes are given by

fol.w) = sign{u — o} [fA(@)fZ—Z ; n(mfﬁl—ﬂ (22)
Jo(0.0) = st = o} | Falon) T2 + a2 23

—wa’® F py/o?(1 + w?) — pi?
NQ_QQ

wo? F py/2(1 + w?) —
M2_5-2

Q1,2 =

a3,4 =

Denote with a; the real roots of Equation (21) such that a; < a; for j > i. Denote with
yi = y(a}) and y5 = y(a}) the extrema of Equation (21) such that yi < y5. If @ = da/dy,
the random process of y is given by

falaz)as — fa(@r)ay if (yy <y<p<y;)or
, , (i <y <y <p)
fr(y,w) =4 falar)ar — fa(az)as . by <p<y<y; (24)
falas)as + falaz)az — fa(ar)ay — fa(as)as if y7 <y3 <y <p
fA(Ell)Ell + fA(fL3)d3 — fA(ELQ)dQ — fA(fL4)d4 otherwise



Analytical expressions for the as and the y*s were derived but omitted due to their length.
The support of y € [y~,y™] is bounded by

Yi if aj €A and aj € A for i#]
y (w)=9q v if aj €A and aje A
min{y(a™),y(a”)} otherwise

) = maz{y} = oo if jw|eA
v )_{ maz{y(a®),y(a”)} otherwise

Notice that fy(y,w) is unbounded at y{ and y; and its support is unbounded from above
for all possible resonant frequencies, i.e. Vw € A.

The closed loop stability equation is O(s, p, k) = as* + 3s® +vs2 +1s+60 = 0, where a =
1+2k3+(1+b)k3, B = 2[—bks+ko(1+ks+bk3)], v = k3+2k; (1+k3) +b(1 — 2k + k2% + 2k, k3),
¥ = 2k [b(ky — 1) + ko] and 6 = (1 +b)k? where b = . The R-H test leads to the non-trivial
inequalities 7y = 8 > 0, 7y = By — a1 > 0 and r3 = By — ad? — 03? > 0. These constraints
can be written as r; = ;% + &b? + (b +n; for i = 1,2, 3. The corresponding CDFs are given
by

( FB(bl) if(/ﬁ:i>0,n=1) OI‘(KJiZO,&:O,Ci>O)
I—FB(bl) if(/ﬁli<0,n=1)OI‘(KJiZO,&:O,Q<O)
FB(b3)—FB(b2)—FB(b1) if ki >0andn=23

Fr,(ri) =1 14 Fp(by) — Fp(b1) — Fp(bs) ifk; <Oandn=3

FB(bQ)—FB(bl) if/ﬁi=0andn=2and €j>0
1—FB(b2)+FB(b1) if/«:i=0andn=2and§i<0
| H{ri —n:} otherwise

(25)

where i = 1,2,3, Fp(b) = Fao(Vb) — F4(—vb) and n is the number of real roots of Q(b) =
Kkib® + & + Gb+m; — r; = 0, such that Q(b;) = 0 and b; < b; for j > 4. Notice that the
coefficients of this polynomial are non-linear functions of the components of k. Analytical
expressions for the bs were derived but omitted here due to their length. Expressions for the
PDF's of the constraints can be derived by differentiating Equation (25).

The problems P1, P2 and P3 can now be solved numerically using Equations (24) and
(25). In the results that follow, a is a beta random variable with parameters {6,6}, A =
[0.5,1.5], € = 0 and 9, hi(w) and hy(w) are as before. Figures 18 and 19 correspond to the
P2-solution. In this case, a strictly proper control leads to a robust stable system in which r
is purely deterministic. The uncertainty on the natural frequency is clearly reflected in the
support of fy(y,w). Notice that in spite of this, F[y] is bounded. Figure 20 shows the section
of the k-domain where k3 = 0 for A = [0.5, 10]. The support of the corresponding constraints
is filled with dotted lines. Notice that the bounds of such supports are not always given by
the deterministic constraints evaluated at the extreme values of A, ie. 7;(b”) # r; and
r;(b7) # . By constraint envelopes we mean a deterministic set of inequalities satisfying
the stability conditions for € = € = € = 0. Having this information at hand will considerably
reduce the computational demands of searching for the optimum. The admissible domain,

10



where robust solution exists, is colored in gray. Such region is bounded by the tightest set
of constraint envelopes. Figure 21 corresponds to the P3-solution, whose features are very
similar to figure 19.

5.3 Decoupling

Below, a compensator for the plant given in Equation (20) is designed by solving the P4-
problem given the configuration shown in figure 2. The compensator will be first designed
via generalized decoupling. Define G(s, E[p]) as the nominal plant. If the desired uncoupled
behavior is given by Diag{G(s, E[p])}, the resulting compensator is

1 (Ela] — 5)* Ela](1 + 5)(E[a]* — 5)
(52 + Ela]?)(1 + Ela]?) [ —Flal(1 + 5)(Ela]* — 5) (Ela] — s)?
Notice that the compensator is Bounded-Input-Bounded-Output (BIBO) stable and that
Fla] acts as a design variable, i.e. ¢ = {c} = {F[a]}. Few manipulations lead to

—a?(c* — s) —ac(l + s)? — s(s — ) —(a —¢)(1 + s)(ac+ s) }
(a—c)(1+s)(ac+ s) —a?(c* = s) —ac(l + s)? — s(s — )

C(s,c) =

D=«
(26)

where D(s,c,p) = CG and a = (2 — s)/[(s* + ) (1 + *)(a® + s*)]. Notice that if a is
deterministic, i.e. fa(a) = d(a — FEla]), and ¢ = FEla] perfect decoupling is achieved, i.e.
D(s,c,p) = Diag{G(s, E[p])}. The presence of uncertainty prevents this to happen. In this
example the compensator is based on the inverse of the plant, what give us as many design
variables as uncertain parameters. This, however, does not have to be the case.

The structure of the matrix (26) allows us to define an equivalent metric for the off-
diagonal error as follows

_ pila — ¢
Y=Yz =Y = —|a|2 — w2|| a?c? + w? (27)

Denote with @, the real roots of Equation (27) provided that d; < a; for j > i. Let y; be
one of the n extrema of y, i.e. yf = y(a;) such that dy/da = 0 at a = af, and y; < y; for
i < j. If @ =da/dy, the random process of y is given by

fA(CLQ)GQ - fA(a1)a1 if C, holds
fA(al) fala ) if C5 holds
W) = . L 28
B 9) =0 7 @)+ Fala)is — Fa@)ds — fa(@d, if Cyholds D
fA(al)al + fA(&g) — falag)as — fa(Gs)ay otherwise
where the C, Cy and C5 are
{n="Tand [(|c|>w, y1 =29 >y)or (lc] >w, §>yi >y)or (Jcf <w, yi > y)]} or
Cr=1 {n=3and[(y3 >g>yi >2y)or (y3 2§ >y =y3)or(y5 =29 >y; >y >y)or

(yp>g>y)or (§>ys>y>ys) or (9

{n=1and (y; >y >y} or
Co=¢ {n=3and [(ys >y >ys >y>yj)or(y;>y>y>y;) or
(i >y>ys>yr >4) or (yf >y >9)]}



{n="Tand [(Jc] >w, y >y; >7) or (|c] >w, y > 7§ >yf) or (J¢] < w, y > )]} or
Cs=3 {n=3and[(y>y; 2y 29>y or(y3 2y >y >y >9>yi)or (y>9>y;)
or(y>ys>g>y>ys)or(y>ys>ys >yi >9)or (ya >ys >y >y >9)}

and § = |c|p. Analytical expressions for a;, af and y can be found. The support of y is
bounded by

min{y} = if ce A
“(w) = yr if aje AandcgA
4 I if a5 € Aand{a, aj} ¢ Aandn=3

min{y(a™),y(a”)} otherwise

maz{y} = oo if |w|eA
yt(w)=1< v if a5€ A and |w] ¢ A andn =3
maz{y(a™),y(a")} otherwise

Problem P4 can now be solved numerically using Equation (28). In the results that
follow the same data used in Example 5.2 is assumed and 2 € [0,00). Figure 22 shows the
magnitude of the off-diagonal terms of D versus frequency for ¢ = FE[a] = 1. This is the
resulting behavior of a conventional decoupling design, where perfect decoupling is achieved
if the plant is known exactly. Notice that y~ and y(FE]a]) coincide. This figure indicates
significant discrepancies between deterministic and stochastic results.

The P4-solution leads to ¢* # E[a]. Figure 23 shows a slight improvement in the decou-
pling at low-frequencies. Compensators with more design variables and/or different struc-
tures can achieve better results. Note that: (i) the compensator’s structure does not have
to be based on the inverse of G, (ii) the decoupling of non-square plants can be studied by
the same means.

6 DISCUSSION

In the cases where the uncertain parameters represent a set of changing operating conditions
this methodology leads to valuable solutions that otherwise are very difficult to find. In
problems where the parameters are physical quantities modeled as uncertain variables as a
result of our ignorance on their real value, the solutions can be improved further by refining
and even eliminating their probabilistic description using additional information. Adaptive
control and model predictive techniques can be used in this respect.

The ignorance on the actual implemented values of the solution can be studied in advance
by modeling physical design quantities as additional random variables. We refer to this
type of uncertainty as input uncertainty. This can be achieved by using variables that
parameterize prescribed PDF's as design variables in the optimization problem. Notice that
while the physical quantity is deterministic, its modeling is stochastic and its manipulation
is done via deterministic variables. For example, if a gain is modeled as a Gaussian random
variable with a fixed relation between its first two order moments -say, due to limitations
in the precision of the solution to be implemented- optimal solutions can be found by using
a single deterministic variable in the optimization problem. Designs that carry out this
practice will lead to satisfactory performances for the entire range of gain values within the
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support of the corresponding PDFs. Notice that in spite of using the same modeling for
both parameter and input uncertainty, their physical significance is very different.

The behavior of the probabilistic constraints and their envelopes in the k-space must be
explored. Such envelopes cannot, in general, be easily built (providing they exist). This
fact prevents us from relaxing the computational demands of the optimization problem. The
tightest constraint envelopes, given by the set that maximizes the size of the robust stable
region in the k-space, can be obtained by propagating A at a high computational expense.
On the other hand, over-constraining envelopes might be easier to build at the expense of
introducing conservatism into the problem. This is especially valid in the cases where at least
one of the constraints is active (in the probabilistic sense) at the optimum. Circumventing
the probabilistic nature of the constraints leads to the loss of the sensitivity of the probability
of instability to changes in k. This information is very valuable from the design point of view.
This feature posts a formidable trade-off between numerical convenience and mathematical
significance.

The control design of systems with multiple uncertain parameters lead to additional
challenges. In such problems, the calculation of moments and probabilities have to be done,
almost exclusively, by means of sampling techniques and asymptotic approximations. While
sampling based techniques are suitable for calculating first order moments and large probabil-
ities; asymptotic approximations are reliable for small probabilities. Because the probability
of occurrence of the metrics used in the optimization problem can fluctuate considerably,
algorithms that dynamically discriminate between these tools are desirable. In addition, the
repeated evaluation of the cost function suggest the need for adjusting the trade off between
accuracy and computational cost dynamically. These issues are currently being investigated.

7 CONCLUSIONS

In this paper, a stochastic approach to the control synthesis of systems with structured
uncertainty is introduced. This strategy allows us to quantify the probability of instability
and/or unfavorable performance such that robust optimality can be pursued. Formulations
for the stochastic optimization of SISO and MIMO control systems are proposed taking
into account decoupling, performance and stability considerations. Examples that admit an
exhaustive analysis of the formulation and its solution are used to validate the approach.
The application of this methodology to large scale problems, where the use of reliable and
inexpensive numerical tools is crucial, is currently being addressed.
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Figure 3: Stochastic Bode diagram for the SISO uncontrolled system. The PDFs of the
magnitude and phase are non-zero within the solid lines shown. The nominal plant |G(E|[p])|
and its expected value E[|G(p)|] are indicated with dash-dotted and dashed lines respectively.
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Figure 4: Stochastic Bode diagram of a design that favors the performance at low frequencies.
The PDFs are non-zero within the solid lines shown, i.e. y~ < y < yt. The nominal
plant y(E[p]) and its expected value Ely(p)| are indicated with dash-dotted and dashed lines
respectively. The curve of the target function y is shown using a line-circle pattern. The
same line conventions are used in the bottom for ¢(L).

Figure 5: PDFs of the R-H determinants for the optimal solution. fr,(r1), fr,(r2) and
frs(r3) are show using dashed, dash-dotted and solid lines respectively.
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Figure 6: Stochastic Bode diagram for a design that favors the performance at high frequen-
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Figure 7: PDFs of the R-H determinants for the optimal solution. Conventions used previ-

ously apply.
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Figure 8: Top: upper view of fy(y,w) for a robust stable design. Conventions used previously
apply. Dotted lines are used to show the boundary of the sets defined by y < hi(w) and
y > ho(w). Bottom: corresponding P.,.

Y. y" Ely(p)]

10
x107°
5
4k ]
3k .
x
(o)
o
ol i
N J
1 1 I
107 107" 10° 10' 10°

Figure 9: Top: upper view of fy(y,w) corresponding to the optimal solution. Conventions
used previously apply.
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Figure 10: PDFs of the R-H determinants for the optimal solution. Conventions used previ-
ously apply.
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Figure 11: Stochastic Nyquist plot corresponding to the optimal solution. Crosses centered at
the expected value are shown for discrete frequency values. Dotted lines are used to indicate
the support of y in the radial and tangential directions. A dash-dotted line and a dashed line
are used to show the nominal and expected Nyquist plots respectively.
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Figure 12: PDFs of the R-H determinants for the uncontrolled plant. Conventions used
previously apply.
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Figure 13: Stochastic Bode diagram for a robust stable plant. Conventions used previously
apply.
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Figure 14: PDFs of the R-H determinants for a robust stable plant. Conventions used
previously apply.
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Figure 15: Stochastic Bode diagram. Conventions used previously apply.
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Figure 16: PDFs of the R-H determinants. Conventions used previously apply.

- RO . , . , ,
-15 -1 -0.5 0 0.5 1 15 2 25
Re

Figure 17: Stochastic Nyquist plot corresponding to the optimal solution. Conventions used
previously apply
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Figure 18: PDFs of the R-H determinants. Conventions used previously apply.
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Figure 19: Optimal solution to the P2 problem. y(E[p]), Ely(p)], y~ and y* are indicated
with dash-dotted, dashed and solid lines respectively. The curve of the target function 7 is
shown using a line-circle pattern.
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Figure 20: Section of the k-domain for ks = 0. The support of the constraints is filled with
dotted lines and the functions r;(a™) and r;(a™) are shown using solid lines. Robust stable
regions, where the optimal resides, are colored in gray.
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Figure 21: Top: upper view of fy(y) for a robust stable design. Conventions used previously
apply. Bottom: corresponding P,,.
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Figure 22: Results for ¢ = Ela]. Top: magnitude of the off-diagonal term of B. The PDFs
are non-zero within the solid lines, i.e. y~ <y < y*. The nominal and expected behaviors,
namely y(E[p|), Ely(p)] are marked with dash-dotted and dashed lines respectively. In this
case, y~ and y(E[p]) coincide. Bottom: probability of the norm of the off-diagonal term to
exceed Yym = 0.05.

1 T I T T
i |
I
: |
| I
: o
0.8F X [ _
[
[ i
P
| : by
oy
[ .
B 0.6 Iy | h
= v
I R
= Lt
ﬁl . ! f | Il
> 0.4 [N .
+>. ! 1 | \
i " A
| .
! \
/, i !
0.2 S i i
/ Wt
a \
_ - 2 LN
——————————— T N \
. - - N
0 S Th = ——
1 1 1
107 107" 10° 10' 10°
(0]

Figure 23: Results to the Pj-problem. Conventions and values used in the previous figure
apply.
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